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NOTES PART I: EXAMPLES

Let us present a bunch of differential equations with different types of singularities. Most of them are

classical and have a geometric or number theoretic background.

The numeration follows the forthcoming Lecture Notes on Fuchsian Differential Equations. The write-up

is (very) preliminary and sketchy, be cautious for errors or typos. Nothing will be proven yet. References

will be added later on.

(B8 0) Differential equations with constant leading term and holomorphic coefficients have no singularities

in C. They might have singularities at ∞. [Try to find an example of such a singularity at ∞!] At all

non-singular points, Cauchy’s theorem applies, and not much more can be said.

(B9 1) The Euler equation
∑n
i=0 cix

iy(i) = 0 is the prototype of an equation with a regular singularity at

0 (and at∞). Indeed, the quotients pi(x)
p0(x) = xn−i

xn equal x−i and have all poles of exact order i at 0. All

differential equations with at most two regular singularities, say, at 0 and∞, are already Euler equations. If

all exponents ρi are distinct, the monomials y(x) = xρi form a C-basis of solutions. If a local exponent ρ

has multiplicity m, the respective solutions are xρ, xρ log(x),..., xρ log(x)m−1.

(B10 2) The (second order) hypergeometric equation was considered already by Euler (1707-1783) and

studied later extensively by Gauss (1777-1855). It has the form

x(x− 1)y′′ + ((a+ b+ 1)x− c)y′ + aby = 0,

with a, b, c ∈ C. At first glance, the equation may seem rather arbitrary. This is not the case: on the

contrary! It has three singularities, namely at 0, 1 and ∞. All three are regular. All second order

linear differential equations with three regular singularities are equivalent, via an automorphism of P1
C,

i.e., a Möbius transformation, to the above form: take a fractional linear transformation x → αx+β
γx+δ , with(

α β
γ δ

)
∈ SL2(C) and a multiplication of the y-variable by a monomial. So the Gauss hypergeometric

equation covers all these cases. The exponents at 0, 1 and∞ are 0 and 1− c, respectively, 0 and c− a− b,
respectively a and b. The position of the three singularities and the values of their exponents determine the

hypergeometric equation completely.

A basis of solutions of the hypergeometric equation with parameters a, b, c [excluding some special values]

is given by the hypergeometric series (denote by ak̄ = a(a + 1) · · · (a + k − 1) the rising factorial or

Pochhammer symbol)

y1(x) = 2F1(a, b; c;x) =

∞∑
k=0

ak̄bk̄

ck̄k!
xk,
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y2(x) = x1−c
2F1(a− c+ 1, b− c+ 1; 2− c;x).

Idea of proof. The action of SL2(C) on P1
C by Möbius transformation is 3-transitive: any triple of distinct

points can be mapped by the action of SL2(C) to any other triple of distinct points: If a1, a2, a3 are three

distinct points, apply x→ (a2−a3)(x−a1)
(a2−a1)(x−a3) and obtain 0, 1,∞ [Ince, p. 497]. Therefore, given a second order

differential equation with three regular singular points, we may assume that these are located at 0, 1, and

∞. As the equation has order 2, there will be for each of these points 2 local exponents.

A prospective solution y(x) of the differential equation is factored into y(x) = x−s0(x− 1)−s1 · z(x). This

yields for z(x) a new differential equation with the same singularities but modified exponents (0, ρ0 − σ0),

(0, ρ1 − σ1) and (ρ∞ + σ0 + σ1, σ∞ + σ0 + σ1). Thus the scheme of exponents has become the same

as the one for the hypergeometric equation. As the location of the singularities and their local exponents

determine the differential equation, we are done.

In [Ince, p. 496] a similar procedure is applied (for second order equations): Assume that a ∈ C is a

regular singularity with exponents ρ and ρ + 1
2 . Multiply the variable y in the differential equation by

(x − a)−ρ, set z = (x − a)−ρy, and get a differential equation for z whose exponents are now 0 and 1
2

[please check this!]. This can be done simultaneously for all singularities in C, regardless of the type of

the singularity at∞, whose exponents do not change under the transformation. Of course, from a solution

z(x) of the new differential equation the solution of the original equation can easily be reconstructed via

y(x) = (x− a)ρz(x).

Landau indicates instances already observed by Schwarz for the algebraicity of all the solutions expressed

in terms of the parameters a, b, c and the differences c− a, c− b. He uses Eisenstein’s theorem to deduce

these conditions in a mostly computational manner, see also [Höpp].

(B10’ 2’) The general hypergeometric equation. Write an n-th order differential operator L as an operator

in δ = x∂x,

Lδ = δn + q1(x)δn−1 + . . .+ qn−1(x)δ + qn(x),

with qi ∈ C(x) rational functions. It has regular singularities in 0, 1 and∞ and is non-singular elsewhere

if and only if [Beukers-Heckman, Prop. 2.1, p. 327]

qi(x) =
∑i
j=0 cij(x− 1)−j , for cij ∈ C.

It is called hypergeometric if

qi(x) = ci0 + ci1(x− 1)−1

for all i, i.e., if the poles of qi at x = 1 have at most order 1. In this case, one may factor (1 − x)L into

[Beukers-Heckman, p. 327]

(1− x)L = (δ + β1 − 1) · · · (δ + βn − 1)− x(δ + α1) · · · (δ + αn)

with αi, βi ∈ C. The local exponents at 0, 1 and∞ are 1− β1, ..., 1− βn at x = 0, α1, ..., αn at x = ∞,

and 0, 1, ..., n− 2 and
∑n
i=1 βi −

∑n
i=1 αi at x = 1. If β1, ..., βn are pairwise not congruent modulo Z, a

basis of solutions of Ly = 0 is given by

yi(x) = x1−βi
nFn−1(1 + α1 − βi, ..., 1 + αn − βi; 1 + β1 − βi, ..., 1̂, ..., 1 + βn − βi;x),

where 1 + βi − βi = 1 is omitted and where



nFn−1(a1, ..., an; b1, ..., bn−1;x) =

∞∑
k=0

ak̄1 · · · ak̄n
bk̄1 · · · bk̄n−1n!

xk.

(B11 3) Here is an example of a (regular) singular differential equation whose solutions are nevertheless

nice: Take x2y′′−3xy′+3y = 0. This is an Euler equation. The indicial polynomial is ρ(ρ−1)−3ρ+3 =

ρ2 − 4ρ+ 3 = (ρ− 1)(ρ− 3). The solutions are spanned by y1(x) = x, y2(x) = x3, hence holomorphic

despite the presence of the singularity. The singularities of differential equations which admit a basis of

locally holomorphic solutions are called apparent singularities. They are kind of “harmless”.

(B12 4) In general, the local solutions of a regular singular differential equation are no longer power series

(not even formal ones). Take x2y′′ − xy′ + y = 0 with indicial polynomial (ρ − 1)2 and solutions x and

x log(x). And the equation xy′ − αy = 0 has local solution cxα, c ∈ C, for any α ∈ C. For α 6∈ Z, this

defines a “multivalued” function xα = exp(α log(x)) at 0.

(B13 5) The Legendre differential equation

4t(t− 1)z′′ + 4(2t− 1)z′ + z = 0

is associated to the family of elliptic curvesEt : y2 = x(x−1)(x−t), t ∈ C, by integrating the (essentially)

unique holomorphic 1-form

ωt =
dx

y
=

dy

(x(x− 1)(x− t))1/2

on Et. Then the integral z(t) =
∫
γ
ωt of ωt along a closed path γ on Et satisfies the differential equation

[...the path has to be varied continuously with t, but this does not affect the integral]. The equation has

clearly regular singularities at 0 and 1, but what about∞?

(B14 6) The Bessel equation is x2y′′ + xy′ + (x2 − α2)y = 0 with α ∈ C. For α 6= 0, it has a regular

singularity at 0. At∞, the transformed equation is x4y′′+x3y′+(1−α2x2)y = 0, hence∞ is an irregular

singularity of the Bessel equation.

Exponents at 0 are ±α, first local solution y1(x) = xα
∑∞
i=0 cix

i, c0 = 1, with linear recursion i(i +

2α)ci + ci−2 = 0, ci = 0 for i odd. This is the Bessel function. Second solution (for α 6= 0) is

more complicated and involves harmonic numbers hj =
∑i
k=1

1
k and the Euler-Mascheroni constant

γ = limi→∞(hi − log(i)) = 0.577216...; it is of the form y2(x) = x−nz(x) + c log(x)y1(x). The case

α = 0 has to be treated separately.

The Bessel functions arise naturally when solving the Poisson equation for a system with cylindrical

symmetry.

[physics stackexchange: https://physics.stackexchange.com/questions/145177/what-physical-phenomena-

are-modelled-by-chebyshev-equation]

(B15 7) Apéry’s differential equation is of the form

(x4 − 34x3 + x2)y′′′ + (6x3 − 153x2 + 3x)y′′ + (7x2 − 112x+ 1)y′ + (x− 5)y = 0.

It has four regular singularities, at 0,∞ and (1±
√

2)4 (see example (P7)). The associated linear recursion

has order 2, with cubic coefficients,

k3ck = (34k3 − 51k2 + 27k − 5)ck−1 − (k − 1)3ck−2.



For initial values c0 = 1 and c1 = 5 one obtains integer values ck =
∑k
i=0

(
k+i
i

)2(k
i

)2
. For initial values

c0 = 0 and c1 = 6 one obtains only that lcm(1, 2, ..., k)3ck is integral, while ck itself is not globally bounded

(lcm denotes the lowest common multiple).

As a matter of curiosity, the square-root
√
y(x) of a solution to Apéry’s equation satisfies a differential

equation of second order, namely

(x3 − 34x2 + x)y′′ + (2x2 − 51x+ 1)y′ + 1
4 (x− 10)y = 0.

One says that Apéry’s equation is the square of the latter equation. The second order equation has the same

four regular singularities, at 0,∞, and (1±
√

2)4. The respective linear recursion is

k2ck = (34k2 − 51k + 39/2)ck−1 − (k − 3/2)2ck−2.

(B16 8) The Airy equation y′′−xy = 0 (George Biddell Airy, 1801-1892, article on optics from 1838) has a

unique singular point, namely at∞. The local form at∞ corresponds to the equation x5y′′+2x4y′−y = 0

at 0. Setting Y = (y, y′)T , we get the equivalent system of first order linear differential equations

Y ′ =

(
0 1
x−5 −2x−1

)
· Y

representing the Airy equation at∞. A fundamental matrix of solutions of this system (now considered at

0) is

Y (x) = Φ(x)xJUeQ(
√
x)

with

U =

(
1 1
1 −1

)
, J =

(
1/4 0
0 −3/4

)
, Q =

(
−2/3x3/2 0

0 2/3x3/2

)
,

and some function Φ(x). Outside∞, the local solutions are surprisingly complicated: [Mahaffy] gives as

solutions at 0 the expansions

y(x) = c0

∞∑
k=0

1

2 · 3 · 5 · 6 · · · (3k − 1)3k
x3k + c1

∞∑
k=0

1

3 · 4 · 6 · 7 · · · 3k(3k + 1)
x3k+1

= c0Ai(x) + c1Bi(x)

with the Airy functions

Ai(x) =
1

π

∫ ∞
0

cos(
1

3
z3 + xz)dz,

Bi(x) =
1

π

∫ ∞
0

exp(−1

3
z3 + xz) + sin(

1

3
z3 + xz)dz,

For a graphical presentation, see [Mahaffy, p. 8]. Both functions oscillate on the negative real axis, while

on the positive real axis Ai tends to 0 and Bi to∞. Airy’s equation is related to the one-dimensional time

independent Schrödinger equation with total energy E

− }
2m

y′′ + V (x)y = Ey.

This equation becomes for the special potential V (x) = x the (modified) Airy equation

y′′ − 2m

}
(x− E)y = 0.

(B17 9) The operators L1 = x2∂2 − x∂ − x3, L2 = x2∂2 − x∂ − x2 and L3 = x2∂2 − x∂ − x have the

same initial form in(Li) = x2∂2 − x∂ but show quite different behaviour when one tries to find normal

forms for them and to compute their power series solutions [Gann-Hauser, ex. 1, 1bis, 1ter, p. 14].



(B18 10) Here are four second order differential equations with four regular singular points admitting at

least one power series solution with integral coefficients [ChCh2, p. 20],

x(x2 − 1)y′′ + (3x2 − 1)y′ + xy = 0.

x(x2 + 3x+ 3)y′′ + (3x2 + 6x+ 3)y′ + (x+ 1)y = 0.

x(x− 1)(x+ 8)y′′ + (3x2 − 14x− 8)y′ + (x+ 2)y = 0.

x(x2 + 11x− 1)y′′ + (3x2 + 22x− 1)y′ + (x+ 3)y = 0.

In general, it seems to be extremely difficult to detect from the differential equation whether there exists

a solution with integer coefficients (for a suitable choice of initial values). Apéry’s equation is such an

example. Zagier made a whole search for further examples. Among a 100 million computed cases of Apéry

type equations, he found only seventeen equations with integral solutions.

(B19 11) (x2 − b2)(x2 − c2)y′′ + x(x2 − b2 + x2 − c2)y′ − [m(m + 1)x2 − (b2 + c2)p]y = 0 Lamé’s

equation.

(B20 12) Legendre’s equation, with eigenvalue λ. Solutions can be extended into singularity if and only

if λ = n(n + 1), and the solutions are then the associated Legendre polynomials. The equation arises

naturally when solving the Poisson equation for a system with spherical symmetry (such as the hydrogen

atom). Legendre’s equation occurs quite often in areas such as electrodynamics and quantum mechanics.

[physics stackexchange: https://physics.stackexchange.com/questions/145177/what-physical-phenomena-

are-modelled-by-chebyshev-equation]

(B21 13) (x2−1)y′′+xy′−λ2y = 0 Chebyshev’s equation. Regular singularities at±1 and∞. Recursion

ci+2 = i2−λ2

(i+2)(i+1)ci. Solutions involve Chebyshev polynomials of first and second kind.

[physics stackexchange: https://physics.stackexchange.com/questions/145177/what-physical-phenomena-

are-modelled-by-chebyshev-equation]

(B22 14) y′′ − 2xy′ + λy = 0,

Hermite’s equation. Irregular singularity at∞. Solutions at 0 are holomorphic, can be expressed as linear

combinations of two hypergeometric series, the second being the Hermite polynomial Hn if λ = 2n ∈ 2N.

The recursion for the coefficients is ci+2 = 2i−λ
(i+2)(i+1)ci.

[https://mathworld.wolfram.com/HermiteDifferentialEquation.html]

H1(x) = 2x, H2(x) = 4x2 − 2, H3(x) = 8x3 − 12x, ...

Exponential generating function:
∑∞
k=1Hk(x) 1

k! t
k = e2xt−t2 .

(B23 15) xy′′ + (ν + 1− x)y′ + λy = 0,

Laguerre’s equation. Regular singularity at 0 and irregular singularity at ∞. If λ ∈ N, the solution at 0

is polynomial and thus extends into 0, giving the associated Laguerre polynomial for arbitary n, and the

(classical) Laguerre polynomial for ν = 0. The recursion for the coefficients is ci+1 = i−λ
(i+1)(i+ν+1)ci.

[Wolfram: https://archive.lib.msu.edu/crcmath/math/math/l/l039.htm]

Physics Forum: The equation arises in solving Schrödinger’s equation to find the quantum-mechanical wave

function of hydrogen. Specifically, it’s associated with the radial part of the wave function.



[https://www.physicsforums.com/threads/uses-of-laguerre-differential-equ.222949/]

(B24 16) xy′′ + (c− x)y′ − ay = 0,

Kummer’s equation (confluent hypergeometric equation). Has regular singularity at 0 and irregular singu-

larity at∞. It is called confluent since in the hypergeometric equation with three singular points two are

merged to one singularity.

[https://math.stackexchange.com/questions/190486/transforming-differential-equation-to-a-kummers-equation]

(B25 17) (1− x2)y′′ − 2(µ+ 1)xy′ + (ν − µ)(ν + µ+ 1)y = 0,

Gegenbauer’s equation, singularities at ±1. If −1/2 + µ + ν is an integer n, one of the solutions is the

Gegenbauer polynomial Cn(x).


